
MPMM: A MASSIVELY PARALLEL MESOSCALE MODELIan FosterJohn MichalakesMathematics and Computer Science DivisionArgonne National LaboratoryArgonne, Illinois 604391. IntroductionStatic domain decomposition is a technique that provides a quick pathto porting atmospheric models on distributed-memory parallel computers.However, parallel ine�ciencies in the form of load imbalances and ill-tunedcommunication are di�cult to correct without complicated and explicit re-coding. Recon�guring the code to run on larger or smaller numbers of pro-cessors may require recompiling. Modularity and machine independence mayalso su�er. If full advantage is to be taken of massively parallel processing(MPP) technology, tools and techniques that allow for dynamic performancetuning and recon�guration are required.Program Composition Notation (PCN) is a language and run-time sys-tem developed at Argonne and at the California Institute of Technology forexpressing parallel programs [2, 3]. It provides an intermediate layer betweenthe application program and the physical processors of a computer. It al-lows the model to be statically decomposed over a virtual machine, but thisvirtual machine can be mapped and remapped dynamically over the phys-ical computer. Programs are portable to as many machines as PCN itself,modularity is easily preserved, and communication tuning for a particularcomputer is encapsulated within the PCN run-time system.In this paper we report on a project at Argonne National Laboratoryto parallelize the Penn State/NCAR Mesoscale Model version 5 using a �negrain decomposition dynamically mapped and managed under PCN.�This work was supported by the O�ce of Scienti�c Computing, U.S. Departmentof Energy, under Contract W-31-109-Eng-38, and was performed in part using the IntelTouchstone Delta System operated by Caltech on behalf of the Concurrent Supercomput-ing Consortium. Access to this facility was provided by Argonne National Laboratory.



2. The Mesoscale Model and MPPThe Penn State/NCARMesoscale Model simulatesmeso-alpha scale (200{2000 km) and meso-beta scale (20{200 km) atmospheric circulation systems[1, 5]. MM has been developed over a period of twenty years, �rst at the Penn-sylvania State University and more recently also at the National Center forAtmospheric Research. It is used for real-time forecasting and atmosphericresearch, including climate prediction and storms research. The need forperformance has up to now been met by designing and optimizing the modelfor vector supercomputers, and this approach has been adequate for manycurrent problems. However, while multitasking can increase performance byperhaps an order of magnitude, technological and physical constraints limitthe absolute performance that can be attained by conventional supercom-puter architectures. In addition, the reliance on custom components makesthis approach very expensive. Hence, the MM is costly to run and is near itsupper limit of performance on current problems.Massively parallel processing (MPP) achieves high performance by us-ing, instead of one or a small number of very expensive vector processors,hundreds or thousands of inexpensive microprocessors. By distributing mem-ory locally and connecting processors with scalable communication networks,very large MPP machines may be constructed. Building on recent develop-ments in interconnect technology and microprocessor design, this approach isalready competitive with conventional supercomputers and is far from reach-ing its limits. Hardware architectures capable of scaling to tera
ops peakperformance have already been announced by Intel and Thinking MachinesCorporation, and tera
ops computers should be available within �ve years.Finite di�erence codes such as the MM have proven particularly wellsuited to parallel implementation, because of their regular nearest-neighborcommunication pattern. A prototype parallel implementation of version 4 ofthe MM code executed at nearly one-third the speed of a 1-processor CRAYY-MP on 12 i860 microprocessors. This prototype used a static (compile-timecon�gured) one-dimensional west/east decomposition of the model grid intoequal sized sections. O�-processor data was stored in �xed array extensionsand kept up to date by message passing (Figure 1).To utilize a larger number of processors, the MM grid must be decom-posed in a second horizontal dimension. This could be achieved by follow-ing a static decomposition strategy, adding array extensions in the second2



. . .

0 1 2 p−1Figure 1: Static decomposition of MM4 grid. Data communication was throughextended array \pads" that replicate o�-processor memory.dimension and providing additional structure and communication to accountfor diagonal data dependencies between grid cells. However, reallocatingwork to processors for load balancing or machine utilization would di�cult,since the static decomposition requires regular rectangular patches. Tuning,in particular overlapping computation and communication, would requirecomplicated explicit recoding that would also introduce machine dependen-cies. The decision was made to adopt a dynamic rather than a static de-composition when moving from the prototype to a production version of theMM.2. Massively Parallel MM5Version 5 of the Penn State/NCAR Mesoscale Model, released in the fallof 1992, incorporates and standardizes a number of features that either werenew or that had been added to MM4 for speci�c applications. Features in-clude a nonhydrostatic option, four-dimensional data assimilation, movablenested grids, and improved physical parameterizations. A pre-release ver-sion of the MM5 code was made available for MPMM development in thespring of 1992, and work is continuing. In MPMM, the static decompositionstrategy was abandoned in favor of an approach that would support dynamicload balancing and modular implementations of 4D data assimilation, nestedgrids, and model coupling. 3



2.1 Fine-Grained ImplementationMPMM utilizes a �ne-grained horizontal decomposition of the MesoscaleModel domain in which each multicomputer node is allocated some smallbut not statically determined number of columns in the grid. The shapeof the processors' allocated region tends toward rectangular (where thereare no load imbalances), but columns are able to migrate away from moreheavily loaded processors when necessary. The technique that allows for thisnonstatic decomposition of the grid is to make a distinction between thelogical decomposition from the physical decomposition. The grid is decom-posed over a virtual topology of logical PCN processes; the virtual topologyis then mapped dynamically onto the physical processors of a particular par-allel computer (for example, a mesh of processors as in the Intel TouchstoneDelta computer).The processes are connected by streams over which they communicateneeded data to e�ect horizontal interpolation and �nite di�erencing withinthe grid. Where communication streams are cut by physical processor bound-aries, interprocessor communication is automatically generated by the runtime system. Messages over streams between collocated processes are han-dled as memory references. Moving a process to a di�erent physical processorduring model execution does not alter the virtual topology itself, so commu-nication streams \follow" the process to its new physical location (Figure 2).The PCN parallel programming system handles the underlying mechanismsfor constructing virtual topologies of processes, mapping them to physicalprocessors, and implementing communication streams automatically.In addition to the processes representing the model grid, we de�ne a num-ber of global or quasi-global monitor processes which implement such globalfunctionality as managing input and output, coordinating load balancing,interfacing with coupled model systems such as a general circulation model,and interfacing with interactive graphical systems. The monitor processesmay be mapped to a single physical processor or may themselves be im-plemented as parallel programs executing on a separate virtual topology oflogical nodes.2.2 Dynamic Performance TuningAtmospheric models are subject to load imbalances resulting from vary-ing amounts of work over the model grid [6] when decomposed over a set4



column processes
Physical processor
boundaries

Figure 2: During an MPMM run, column processes in the virtual topology maybe migrated away from more heavily loaded physical processors. Communicationstreams automatically follow under the run-time PCN system implementing thevirtual topology.of distributed memory processors in a multicomputer. MPMM will use dy-namic load balancing to maintain parallel e�ciency when the amount of workrequired per grid point is not constant; for example, because of the use of amore elaborate convection scheme in columns containing storm systems orbecause of dynamically created subgrids. The workload on each processorwill be continuously monitored; periodically, imbalances will be corrected bymoving vertical grid columns from heavily loaded to lightly loaded proces-sors. This activity is coordinated by a load-balancing monitor process whichperiodically collects and analyzes load data from each of the processors inthe physical topology and instructs column processes in the virtual topologyto relocate as needed. Alternative load-balancing algorithms can be substi-tuted without changing other components of the parallel code, allowing a5



high degree of customization for load characteristics of a particular modelingapplication.The �ne-grain decomposition of MPMM provides natural opportunitiesfor the PCN run-time system to overlap computation and communication,e�ectively hiding communication costs. PCN handles this automatically inthe course of scheduling processes that have received their data and are readyto run. For example, a process on the edge of a physical processor's allocationmay be blocked waiting for data. During this time, processes on the interioror processes that have already received data execute.2.3 Nesting and CouplingWe intend that MPMM be usable by a broad community of scientists.Critical to this usability will be mechanisms to simplify the implementationof nesting and coupling to other software systems such as other geophysicalmodels but also including interactive graphics packages. We will implementboth these capabilities using common mechanisms for transferring data be-tween domains with di�erent resolutions. In essence, a nested grid will betreated as a coupled run of the model at a �ner resolution. Each grid willtypically be distributed over the entire parallel computer, and appropriateinterpolation/averaging routines will be used to transfer data between grids.In the case of coupled models, data transfers may also involve �les or poten-tially parallel versions of other models running on the same computer. Weanticipate supporting coupling with BATS and CCM2 initially; other modelssuch as RADM will be considered if required.The modularity of the design permits the installation of special-purposemonitor processes into the model. Work is currently under way at Argonneto develop a PCN/AVS parallel graphical interface that will allow real-timeinteractive 2- and 3-dimensional visualization of the model as it executes ona parallel computer. Such an interface could be easily encapsulated withina monitor process and would permit scientists to interactively \explore" thedata within their models. Additional modules will support the data move-ment necessary to implement 4-dimensional data assimilation in a parallelmesoscale model. 6



3. ImplementationIn general, using PCN to parallelize an existing code involves replacingthe topmost levels of the original call tree with PCN modules that emulatethe original control structure of the program but that also set up and manageparallelism. In MPMM, PCN manages the main loop over time steps and itmanages iteration over latitude and longitude, which are now expressed asparallelism. The remaining FORTRAN code has been restructured to oper-ate on individual vertical columns in the grid. That is, the FORTRAN codeto compute a complete time step for one cell i,j has been transformed into amodule. The FORTRAN is restructured with the assumption that all neigh-boring data is in local memory before the module is called. PCN portions ofthe code must communicate data between processes as necessary to satisfythis requirement. Therefore, a complete understanding of the horizontal datadependencies in the model is required.For example, an interpolation of pressure between staggered grids is com-puted as follows:hscr1(i,j) = 0.25*(psa(i,j)+psa(i-1,j)+$ psa(i,j-1)+psa(i-1,j-1))In addition to the value of PSA at the grid point i,j, the value from thewest (i,j-1), the south, (i-1,j), and the southwest (i-1,j-1) must be avail-able. Because intermediate results are also required from neighbors, severalcommunications are necessary for each computed time step.Detailed inspection of the code, assisted by automatic FORTRAN analy-sis tools developed at Argonne, determined what data was needed by a gridprocess and when. Figure 3 shows message sizes and sources/destinations forthe three communication phases identi�ed for each time step. If the modelgrid is completely decomposed so that each parallel process represents a sin-gle grid cell, the process requires ten bidirectional streams to neighboringprocesses. This can be reduced to only six if the grid is decomposed so thatno fewer than four cells are assigned to each process. This provides the ad-ditional bene�t that no streams need to pass through a process, avoiding asource of possible message routing contention on some computers.7



188 184

1888

8 8

464

1296 552

1296 464

1300

1300464

188

464

184

184

556

566

372

1. 2. 3.Figure 3: To compute a time step, the shaded grid cell uses data from its neighbors.A process representing the cell must communicate three times with its neighbors.The �rst communication exchanges data necessary for interpolating pressure be-tween staggered grids and also for decoupling (removing a p* term) from horizontalwind velocity. The second communication exchanges data needed for second andfourth order di�erencing for horizontal advection and di�usion. The �nal stepis required for additional interpolation between staggered grids. Communicationpoints and volumes are shown in bytes. Only receives are indicated, but equivalentdata must also be sent at each communication step.4. PerformanceAt the time of this writing, development work is continuing. This sectiondescribes anticipated performanced based on a model of communication andcomputation in MPMM. The performance model simulates the the cost ofcomputation and the cost to send messages between processors for di�erentmappings of grid processes to physical processors. For a given decomposition,streams are enabled or disabled as necessary to account for interprocessor andintraprocessor communication between processes.Table 1 shows expected performance for MPMM on the Intel TouchstoneDelta computer using the following parameters: The decomposed grid has40 cells in latitude, 60 in longitude. Grid cells are allocated four to a PCNprocess, allowing use of the six point communication stencil described earlier.The mapping of processes to simulated processors is as close to regular aspossible. The cost of computing a single grid cell is 13 milliseconds. This wasbased on observed performance of the MM4 prototype. The cost of startinga message is 600 microseconds; the cost for transmitting one byte of the8



processors compute communicate total e�ciency1 31.20 0.00 31.20 1.0005 6.24 0.34 6.58 0.94710 3.12 0.22 3.34 0.93315 2.08 0.24 2.32 0.89625 1.24 0.17 1.41 0.87950 0.62 0.11 0.74 0.84175 0.41 0.10 0.51 0.806100 0.31 0.08 0.39 0.791150 0.20 0.06 0.27 0.763300 0.10 0.04 0.15 0.690600 0.05 0.02 0.08 0.641Table 1: Simulated times in seconds for one time step of MPMM on Intel Touch-stone Delta computer.message is 80 nanoseconds [4]. Times shown are for a single time step. As thenumber of processors increases, parallel e�ciency is maintained. Althoughthe amount of work on each processor decreases, so does the number ofincoming and outgoing messages.5. ConclusionsWe have described a research and development project intended to de-velop a massively parallel mesoscale model (MPMM), capable of exploit-ing both current and future generations of parallel computers. Projectedtera
ops computers will allow MPMM to achieve performance superior byseveral orders of magnitude to that currently achievable on conventionalsupercomputers. In addition, MPMM opens the possibility of using morecost-e�ective platforms (e.g., networks of multiprocess workstations) for ap-plications that do not require tera
ops performance.MPMM will provide the meteorological community with a cost-e�ective,high-performance mesoscale model. This in turn will broaden the rangeand size of problems that can be studied, permitting scientists to considerlarger problem domains, longer simulations, �ner-resolution grids, and morecomplex model processes than have previously been possible. In addition, the9



parallel algorithms and code developed for MPMM will be directly applicableto projects developing parallel implementations of other, similar models.References1. R. Anthes, E. Hsie, and Y. Kuo, Description of the Penn State/NCARMesoscale Model Version 4 (MM4). NCAR Technical Note, NCAR/TN-282+STR, 1987.2. K. M. Chandy and S. Taylor, An Introduction to Parallel Programming.Jones and Bartlett, 1991.3. I. Foster, R. Olson, and S. Tuecke, Productive parallel programming: ThePCN approach. Scienti�c Programming, 1(1), (1992), 51-66.4. I. Foster, W. Gropp, and R. Stevens, The parallel scalability of the spec-tral transform method, Monthly Weather Review, 120(5), (May 1992),835{850.5. G. Grell, J. Dudhia, and D. Stau�er, MM5: A description of the �fthgeneration PSU/NCARMesoscale Model. Draft NCARTechnical Note,1992.6. J. Michalakes, Analysis of workload and load balancing issues in theNCARCommunityClimateModel. Argonne National Laboratory Tech-nical Memo ANL/MCS-TM-144, 1991.
10


